Documentation

AgentSearchResource

Access via client.agent_search - AI-powered search without chat sessions

Direct Agent Access

Use this for standalone AI searches. For conversational search with context, use ChatResource instead.

Tip: More Token-Efficient Than Chat

These standalone search methods consume significantly fewer tokens than running searches through agentic chat. If you only need to find images or documents without multi-turn conversation, use these directly.

images()

Execute AI-powered image search with intelligent reasoning

async def images(
query: str,
*,
limit: int = 50, # 1-500
folder_id: Optional[str] = None,
image_ids: Optional[list[str]] = None,
) -> ImageSearchAgentResult
Returns: ImageSearchAgentResult - Full results with metadata, summary, and result refs

Example

# Search for images
result = await client.agent_search.images(
"damaged utility poles in residential areas"
)
print(f"Found {result.count} images")
print(f"Summary: {result.summary}")
for img in result.results[:5]:
print(f"- {img.filename}: score={img.score:.2f}")
# Search within a folder
result = await client.agent_search.images(
"safety equipment",
folder_id="folder_abc123"
)

documents()

Execute AI-powered document search with intelligent reasoning

async def documents(
query: str,
*,
limit: int = 50, # 1-500
document_types: Optional[list[str]] = None, # pdf, docx, txt
document_ids: Optional[list[str]] = None,
) -> DocumentSearchAgentResult
Returns: DocumentSearchAgentResult - Chunks with text, scores, and document references

Example

# Search documents
result = await client.agent_search.documents(
"safety inspection procedures",
document_types=["pdf"]
)
print(f"Found {result.count} sections in {len(result.document_ids)} documents")
for chunk in result.results:
print(f"{chunk.document_filename} p{chunk.page_numbers}: {chunk.text[:100]}...")